
The Threat Modeling Naturally Tool: An Interactive Tool Supporting More Natural
Flexible and Ad-Hoc Threat Modeling

Ronald E. Thompson*, Madison Red*, Richard Zhang*, Yaejie Kwon†, Lisa Dang*,
Christopher Pellegrini∓, Esam Nesru‡, Mira Jain*, Caroline Chin* and Daniel Votipka*

*Tufts University; †Swarthmore College; ∓ Northeastern University;
‡ University of Maryland, Baltimore County

Abstract
Threat modeling is an important process in achieving secure-
by-design software systems. While some tools have been
developed to aid system architects in building threat models,
many of these do not support the more flexible ways that
threat modeling occurs in practice. We present the Threat
Modeling Naturally Tool as the first step in providing archi-
tects with a tool that allows for a more natural threat modeling
process that is modular in design. This tool consists of a threat
modeling Domain-Specific Language and a series of modu-
lar components that allow users to specify their system and
assign threats and mitigations without disrupting their brain-
storming. We describe the design and implementation of our
tool using a mock medical device as a case study as well as
discuss how the tool can be used for future work supporting
threat modeling research.

1 Introduction

Threat modeling is a structured process that helps system
architects to brainstorm possible threats to their system and
determine mitigations to identified threats [8, 19, 31]. As they
review a system, architects might look at each element part-
by-part [34], consider various user workflows [36], follow
formal processes such as STRIDE [19] or LINDDUN [41],
and/or utilize various other techniques to build threat models.
For example, in a robotic surgical system, shown in Figure 1,
an architect could analyze the workflow for a Surgeon (C)
remotely guiding a Surgical Robot (1) to operate on a patient
(B) in a different hospital. As the architect considers this
interaction, they might realize an attacker could pretend to be
the remote surgeon by spoofing their identity, thus allowing
the attacker to control the robot and harm the patient. The

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2024.
August 11–13, 2024, Philadelphia, PA, United States.

architect would then decide to add two-factor authentication
to prevent this type of threat.

Threat modeling provides a formal process to help archi-
tects navigate these systems to ensure a thorough review. The
US Cybersecurity and Infrastructure Security Agency (CISA),
along with 17 other international partners, encourages threat
modeling as a key aspect of mitigating the potential impact of
exploiting software and cyber-physical systems [8]. Addition-
ally, global regulators of medical devices and other security
agencies are adding requirements for threat modeling activi-
ties [6, 7, 11, 15, 28].

There have been several tools and domain-specific lan-
guages that have been previously developed to aid system
designers with threat modeling [3, 9, 12, 17, 18, 21, 23, 37].
However, prior research by Thompson et al. observed that
system designers do not use these existing tools [36]. We
expect this is because existing systems do not support the
ad-hoc, flexible ways that Thompson et al. found architects
review systems when threat modeling in practice [36].

We propose the Threat Modeling Naturally Tool (TMNT)
to address this gap. TMNT is an interactive threat modeling
tool designed to support the various ways architects perform
threat modeling in practice. In particular, it is designed to al-
low free-flowing threat modeling on systems of varying stages
of completeness. TMNT comprises five configurable compo-
nents: A domain-specific language, a threat and mitigation
knowledge base, a threat and mitigation identification engine,
a natural suggestion engine, and a user interface. Figure 2
gives each component and relevant interactions. Together,
these components support the representation of systems at
varying specificity, threat, and mitigation identification, multi-
modal user interaction, and threat and mitigation suggestions
tailored to match the users’ focus. In this paper, we describe
the design (Section 3) and implementation (Section 4) of
TMNT, describing how it could be used in a specific case
study scenario, a remotely operated surgical robot (as de-
scribed in Section 2).

In addition to being a useful tool for practitioners, we
believe TMNT will be a valuable resource for researchers



Figure 1: Surgical Robot system diagram. Numbers indicate
system components. Letters indicate user groups.

studying the human factors of threat modeling. We also
present directions for future research using TMNT. The tool,
including the source code and examples, can be found at
tsp.eecs.tufts.edu/tmnt.

2 Example Use Case: Surgical Robot

Before providing details of our tool, we present an exam-
ple use case, which we will use as a motivating example
throughout our discussion. Specifically, we consider a remote-
operated surgical robot, drawn from Thompson et al.’s prior
work, which was developed based on extensive discussions
with professional medical device architects, who regularly
perform threat modeling tasks [36]. A system diagram for the
surgical robot is shown in Figure 1.

This example was developed to represent similar connected
surgical systems, such as Intuitive’s DaVinci [38] and the Au-
ris Monarch [14]. These devices allow surgeons to perform
surgeries remotely. Their complexity and connectedness in-
troduce various network-based threats. Because exploitation
of these devices can lead to patient harm, the FDA requires
manufacturers to submit a threat model of these medical de-
vices for regulatory review before they can be approved for
patient use.

This device is made up of five key components. The Surgi-
cal Robot (Fig 1.1) is the device at the center of the patient
interaction. It is located in the operating room (OR), con-
tains the remotely controlled surgical device, which performs
the physical operation, and sensors for real-time data collec-
tion. The data is then streamed to a central hospital server
within the Hospital Infrastructure (Fig 1.4), which the surgeon
(Fig 1.C) can connect to through their Surgeon Workstation
(Fig 1.3) to control the robotic system remotely and receive
a live video stream of the operation. The video stream and
other data can also be shared with one or many other observ-
ing computers (Fig 1.5) where others (Fig 1.D) can observe

the operation for learning purposes. Data from the surgical
robot is also transmitted through the hospital infrastructure to
patient monitoring equipment (Fig 1.2) and integrated with
the hospital’s Electronic Health Records (EHR).

Some potential threats to this system include the following:

• Insider threats could be at the primary hospital or any
of the remotely connected sites. Potential threats would
include manipulating system operations due to their role
in the hospital, leading to patient harm or leaking of
sensitive data.

• Human error could occur within all parts of the system.
This would include users incorrectly manipulating sur-
gical controls, providing unverified surgery observation
access, or taking down the network for routine mainte-
nance.

• Malicious actors could be located remotely or internal
to any of the connected sites. For example, malicious
actors might tamper with remote commands to the sur-
gical robot to cause the device to malfunction during
surgery or observe telemetry data transmitted between
components, which could reveal sensitive patient data.

• System failures, especially those impacting the hospital
infrastructure, could occur at any point. Possible threats
would include power or network outages, which could
degrade patient monitoring during critical care periods.

3 Tool Design

In prior work, Thompson et al. conducted threat modeling
sessions with 12 medical device security architects [36]. In
these sessions, Thompson et al. asked developers to develop
threat models for two mock systems, similar to the surgical
robot in Figure 1, and observed the order in which partici-
pants navigated system components and how they approached
threat modeling for each component (e.g., threats first, mit-
igations first, etc.). They observed their participants did not
follow a single process but instead varied their approach as
they considered different elements of the system. They also
found architects consider several potential system configura-
tions as they attempt to plan for possible ways their system
could be deployed in practice throughout its lifecycle of use.
To provide a more natural threat modeling experience, we
designed TMNT to support these practices. Specifically, we
considered three primary design goals: supporting varied ap-
proaches, uninterrupted brainstorming, and threat modeling
over incomplete information and alternative configurations.
Support varied approaches (D1). Because architects’ navi-
gate the system and consider threats and mitigations in several
different ways, TMNT should support all possible approaches.
This includes considering threats component-by-component
or interaction-by-interaction, as suggested by some threat

tsp.eecs.tufts.edu/tmnt


modeling guides [29, 31, 35]; focusing on specific system
use cases [36]; or considering centers of gravity [33]. The
user should also be able to switch between these approaches
freely. Naturally, the UI should be designed to allow users to
focus on relevant elements of the described system. Addition-
ally, TMNT should be able to identify potential threats and
mitigations through the lens of different system views. For
example, we would want to be able to simulate attacks both
starting from or leading to the Surgeon Workstation (Fig 1.3),
as opposed to only considering a single direction of attack.

Uninterrupted brainstorming (D2). While TMNT should
be able to provide threat and mitigation suggestions to support
a wide variety of threat modeling approaches, it must be strate-
gic in how these threats are presented. Many current tools
present the full list of suggested threats and mitigations to
users. This produces overwhelmingly long lists that are hard
for users to parse. Instead, we propose filtering suggestions to
the users’ current focus, engaging their natural tendencies and
avoiding breaking their focus, which is common practice in
supporting brainstorming [25, 27]. For example, if the archi-
tect reviewing our surgical robot is focusing on the use case
of the surgeon (Figure 1.C) directing the robot (Figure 1.1)
during surgery, then TMNT would only provide suggestions
relevant to components involved in this workflow, i.e., the
robot (Figure 1.1), hospital infrastructure (Figure 1.4), and
surgical workstation (Figure 1.3).

Incomplete information and alternative configurations
(D3). TMNT must allow the system model to have flexible
representations. The architect might know there are many
ways the system could be deployed or not know the exact
nature of its deployment [9, 36]. When analyzing the system
model for potential threats and mitigations, TMNT should
consider these different possible system representations. This
also has the added benefit of allowing architects to produce
threat models as the system is being designed, supporting
secure-by-design from system inception [8].

In addition to these primary threat modeling design goals,
we considered two general design goals to support tool usabil-
ity: a multi-modal interface and component modularity.

Evolving Interface (D4). Given that there is a learning curve
to threat modeling and that users may have different levels
of expertise, the interface should allow for “graceful evolu-
tion” [30, pg. 41]. Features like drag-and-drop components
and the ability to click and toggle through various system
views help build an “intuitive” design that architects can learn
as they use [30]. Novice users will be presented with more
specific instructions that will evolve to become interpretative
with their experience [20]. As architects become more famil-
iar with TMNT and threat modeling, they should also be able
to switch to a view with more fine-grained control over the
system representation.

Component Modularity (D5). To allow practitioners in dif-
ferent domains to tailor the system to their particular context,

components should be developed modularly to allow users
to swap in alternative versions [26]. For example, medical
device architects might prioritize different types of threats
than power suppliers, necessitating different threat suggestion
engines. An architect can also be given the option to use mod-
ules for formal threat modeling processes like STRIDE [19]
and LINDDUN [41]. Additionally, as more advanced AI meth-
ods become available, it may become useful to incorporate
these techniques to identify novel suggested threats and miti-
gations. Finally, the knowledge base of threats and mitigations
should be easy to update and extend to give architects access
to the quickly growing security knowledge base as they threat
model.

4 Implementation

We built TMNT with our five design goals in mind. TMNT
consists of five components: a system representation in our
domain-specific language (DSL), Fig 2.A; threat and con-
trol knowledge bases Fig 2.B; Assignment Engine, Fig 2.C;
Natural Suggestion Engine Fig 2.D; and User interface (UI)
Fig 2.E. Each component was designed for modularity, both
for ease of development and to allow users the flexibility to
tailor TMNT to their needs [26]. For each component, we de-
scribe its functionality, how it addresses our design goals, and
describe how it would be used in the context of the running
example from Section 2.

Figure 2: TMNT System Diagram.

4.1 Building a Threat Modeling DSL
As part of building TMNT, we needed a robust, flexible DSL
to allow a complete representation of all objects in the threat
model. This DSL should support the ability to analyze and
verify a threat model and allow threat modeling components
to be reused in later models [22]. While there has been
prior work establishing DSLs for threat modeling [1–5, 18],
none fully met our design requirements. Many of these DSLs
only support a specific set of rules to apply threats and con-
trols [1–3, 18], violating D1. Others only support a limited



set of threat annotations [4, 5], which does not lend itself to
modularity (D5). Some require significant additional software
development before they can be used [18], making it difficult
for novices (D4). Rather than trying to modify one of these
tools to fit our needs, we created our own DSL guided by our
design goals and inspired by ideas from these existing DSLs.

In our DSL, a threat modeling object consists of a set of
Components representing the system. These components can
be Elements, which are objects in the system representation,
Threats, or Controls. To allow for varied approaches (D1) and
alternative configurations (D3), we included more specific
types of Elements that help more readily differentiate between
them, using the components of Data Flow Diagrams as a
starting point, i.e., datastore, process, data flow, external entity,
and trust boundary. We then added more levels of specificity
that are associated with more complex system representations
that DFDs cannot necessarily capture [10, 32] and are found
in other threat modeling DSLs [3]. One of these was to create
a Flow abstraction that is not necessarily a data flow, allowing
users to capture more complex workflows that are relevant
to the system [36]. Additionally, we allow the user to specify
parent-child relationships between the elements, allowing
them to “zoom” in and out depending on their needs. Expert
users can directly manipulate the DSL representation of their
system to allow fine-grained edits (D4), and objects in the
language can be sub-typed, or other classes can be added,
supporting modularity (D5)

Representing a system in the DSL (Fig 2.A). The TMNT
DSL provides an overarching framework to describe a system
on a macro level while having the ability to focus on specific
aspects of the system in question and how they relate to one
another. Establishing these relationships allows users to high-
light important system workflows and see how threats might
be connected [18]. As the user creates the various assets and
information flows, they can specify the security properties
(e.g., confidentiality, integrity, availability, non-repudiation,
authorization, and authenticity) relevant to that specific com-
ponent and the associations it has with other parts of the
system.

The surgical robot example in the DSL. Next, we partially
describe how the surgical robot example (Section 2) would
be represented in our DSL. For reference, Figure 3 shows
the associated YAML file produced in our DSL. The robot
would be considered an Asset located within the operating
room (OR) trust boundary. The user can also indicate the
security properties the asset must maintain, which can be
used by the Natural Suggestion Engine (Fig 2.D) to priori-
tize threats/controls based on these properties. This example
prioritizes integrity and availability while setting the bar for
confidentiality guarantees slightly lower. This information
is useful as we assess potential threats against the system,
helping architects determine whether they might accept those
threats if they do not violate a high-priority property. In this

name: Surgical Robot
type : Asset
trust_boundaries : OR
security_properties :

confidentiality : LOW
integrity : HIGH
availability : HIGH

name: Surgical Procedure Execution Flow
type : Workflow
src :

name : Surgeon Workstation
dst :

name : Surgical Robot
path :

name : Hospital Infrastructure
controls :

authentication : Certificated-based
multifactor : true

Figure 3: Example for how the surgical robot and the sur-
geon’s workflow can be specified for the DSL using YAML.

case, the user has not specified everything about this asset.
However, this is sufficient for TMNT, which does not require
a complete specification and will provide suggestions based
on the limited information given (D3). The user then would
go on to specify the other components.

Users can also specify associations of assets, such as a
workflow. In this example, the user wants to consider the
workflow between the robot and the surgeon’s workstation
through the hospital infrastructure. This is defined through a
Workflow type object (the bottom item in Figure 3), which
includes each associated asset, security control, and multi-
factor certificate-based authentication.

4.2 Enumerating Threats and Controls
The DSL also includes Threats and Controls abstractions but
does not dictate specific examples, such as Spoofing. Instead,
TMNT uses a knowledge base of threats and controls and
rules that assign these threats and controls based on system
specifications, such as the component type.

Building a Knowledge Base (Fig 2.B). Many other tools
hard-code the threats and controls into the application itself,
relying on the creator’s knowledge and potentially leveraging
databases such as MITRE’s Common Attack Pattern Enu-
merations and Classifications (CAPEC) [24]. In our initial
prototype of TMNT, we used CAPEC in addition to custom
threats and controls, which we found for our examples. How-
ever, users can add their own threats and controls references
specifying relationships and requirements based on the DSL.

Threat and Control Assignment (Fig 2.C). Using the knowl-
edge base(s) selected by the user, TMNT assigns these threats
and controls based on the system specified by the user and as



the system’s representation is updated, keeping with our goal
to allow for incomplete information (D3). For our prototype,
we are using deterministic rules from CAPEC and our own
custom threats and controls. Still, TMNT can leverage prob-
abilistic rules based on historical examples of threat models
and/or additional rules from alternative sources. Again, this
allows TMNT to be customized based on the user’s needs
(D4) and ensures modularity (D5).

4.3 Defining a Natural Suggestion Engine
(Fig 2.D)

Once a set of threats and controls have been assigned, TMNT
must present this information to build on what the user has
already done (D1) and not interfere with the user’s workflow
(D2). Other tools provide a list of threats based on the system
representation once the user indicates they are done, which
produces a long list of suggestions that can be hard to nav-
igate. TMNT’s goal is to minimize this by instead asking
the user what they would like to work on next, whether that
is thinking of more threats for the component they are fo-
cused on or applying the same control to other parts of the
system. This filters the total list of suggestions produced by
the Threat/Control Assignment Enginge, showing only the
partial list that is relevant to the users’ focus. As the user
progresses through the threat modeling session, more of the
total suggestions list will be presented as their focus changes.

To do this, TMNT uses the list of all the threats and controls
that have been identified by the Assignment Engine (Fig 2.C)
in conjunction with the user interaction stream that comes
from the UI itself (Fig 2.E). Using various heuristics based
on the user’s prior interactions, the system’s representation,
and the potential assignments, TMNT will dynamically rec-
ommend potential paths for the user.
Recommendations for the surgical robot. We show the
potential threats and controls that would be suggested for the
hospital’s server from our example system. The user can see
the potential threats flagged based on what is known (Fig 4a),
or they could review the controls without considering threats
initially and select controls they would expect to use (Fig 4b).
As the user is doing either of these actions TMNT updates
the threat model to ensure that controls are not suggested for
threats that do not apply and threats are considered mitigated
if an appropriate control is selected.

4.4 Designing a User Interface (Fig 2.E)
The final part of TMNT is the UI, which is how users primar-
ily interact with the tool. The UI design requires it to receive
suggestions from the Suggestion Engine and present these in
a way that does not disrupt the user’s workflow (D2). Users
can use a menu interface (seen in Fig 4b and on the left side
of Fig 4a) and direct manipulation via drag-and-drop, depend-
ing on their preferences. The menu provides a more verbose,

structured view, which can help guide novice users through
the interface [20]. Conversely, the drag-and-drop direct ma-
nipulation option allows users already familiar with the tool
to move quicker through the tool as it reduces the number of
clicks necessary for common tasks. [20]. The drag-and-drop
interface uses icons found in other threat modeling tools to
provide a consistent experience [12, 17, 21]. We used the four
questions for threat modeling [31, 43], part of a framework
developed by industry experts, as a way to group the different
menus of activities. Each is described below.
What are we building? The user can add elements to the
system representation through menu options or direct manip-
ulation. The user can also upload a YAML file specifying
the system and any identified threats or controls, as partially
shown in Figure 3. We expect users could develop other pars-
ing tools for direct integration into the architect’s workflows.
What could go wrong? The user will see a list of potential
threats for a selected element, see Fig 4a; if no element is
selected, the user is presented a selection menu for elements
they would like to review. The user then selects which threats
are relevant. If the user wants to address the threat, they can
select a control to apply, and the threat will be marked resolved
in the summary bar at the bottom of the UI (Fig 4c).
What are we going to do about it? The control assignment
mirrors threat assignment, whereby the user select the controls
they want for a specific element. They then confirm which
threat it addresses, which will help draw out implicit assump-
tions being made, which are common in threat modeling [40].
The user can select other elements using the same control,
add additional controls to that element, or switch views.
Have we done a good enough job? In this last menu option,
the user can map controls to threats. The user will evaluate
the residual risk for each finding, which maps a threat(s) to
a control or a set of controls to a threat. This is done using
the questions from NIST 800-30 [16], but it could also be
updated based on the user’s risk assessment framework.

As the user makes threat model edits, the system represen-
tation (Fig 2.A) will be updated, and the user will be able
to save and export the threat model as YAML files linking
system components to identified threats and controls. Addi-
tionally, user interactions are logged by the UI and given to
the Natural Suggestion Engine so it can provide recommen-
dations based on user focus, as well as what they historically
have focused on (and not focused on) to provide suggestions
that allow the user to create a robust threat model.

5 Discussion

There have been several tools developed to support threat
modeling [3,12,17,18,21,23,37], but none were developed to
match the process real users follow when threat modeling [36].
TMNT represents a first step toward a human-centric threat
modeling tool, giving practitioners the ability to threat model



(a) Suggested potential threats to the hospital’s server
(b) Suggested potential controls that
could be applied to the server

(c) Current information known about the specific element selected

Figure 4: The UI for TMNT when analyzing the surgical robot. The threats (4a) are both for the server and other components
that could affect the server based on the workflows specified. The controls (4b) could be used on a server and would address
some of the potential threats suggested. The server summary (4c) is shown below the menus and drag-and-drop.

in a way that better fits their actual practice. Through its
flexible DSL and natural suggestion engine, TMNT supports
tractable navigation, threat and mitigation suggestions that
do not break user focus, and multiple and incomplete system
representations. The tool is designed to be more usable with
multiple modes of interaction to support users at different
levels of expertise and uses a modular architecture to allow
user customization.

5.1 Future Work

However, TMNT is not an end-state human-centered threat
modeling tool. We have designed the tool based on prior
works’ findings, but that work was on a small number of
participants in a specific domain (i.e., medical devices). The
question remains whether those results generalize and whether
TMNT is actually usable and useful in practice. We plan to
conduct the expected future usability testing to assess TMNT.
However, we note that TMNT offers an additional benefit to
the research community as a platform enabling the measure-
ment of user behaviors during threat modeling. This creates
new opportunities for threat modeling research using TMNT

beyond the evaluation of TMNT. We conclude with a short
research agenda discussion of our plans for future work using
TMNT to understand how people threat model in practice.

Research Agenda: How do people threat model? TMNT
allows fine-grained tracking of user behaviors. We can mea-
sure which objects users add, how they update them, what
suggestions they consider, and many more interactions with
the interface. Because this is built into the tool and can be
collected whenever TMNT is used without researcher supervi-
sion, we can scale user observation beyond the small sample
in prior work [36]. This will allow us to determine whether the
process model we built TMNT on actually generalizes. For
example, we can determine what types of objects users con-
sider most often, what navigation methods are most common,
and what events precipitate a change in method.

Additionally, we expect threat modeling processes will
likely differ between experts and beginners. We can identify
the differences by collecting usage data from members of
both groups. This will allow us to understand what “profes-
sional vision”—the idea that experts know where to look and
develop unique mental structures of information based on
their experience [13]—looks like in threat modeling. Once



we know how experts differ, we can develop education to help
train beginners’ “professional vision” and add suggestions or
visual guides in the tool that help users develop expertise [42].
Conversely, it is also possible experts may develop blind spots
as they focus on certain aspects of a system based on prior
experience, skipping other components that historically are
not an issue [39, pg. 98]. By comparing experts and beginners,
we can identify challenges for each group and update TMNT
to help them address their biases.

References

[1] threagile: Agile Threat Modeling Toolkit. https://gi
thub.com/Threagile/threagile.

[2] AT-AT. https://github.com/yathuvaran/AT-AT,
March 2024. original-date: 2021-10-13T21:20:29Z.

[3] pytm. https://github.com/izar/pytm, May 2024.
original-date: 2018-05-14T23:16:07Z.

[4] threatcl. https://github.com/threatcl/threatcl,
May 2024. original-date: 2021-09-14T23:15:12Z.

[5] threatspec. https://github.com/threatspe
c/threatspec, May 2024. original-date: 2019-06-
16T21:45:19Z.

[6] Agence nationale de la sécurité des systèmes
d’information. SecNumedu-FC/EBIOS Risk Manager –
Lancement d’un nouveau référentiel pour la formation
continue dédiée au management du risque numérique,
2019.

[7] Center for Devices and Radiological Health, Food &
Drug Administration. Cybersecurity in Medical De-
vices: Quality System Considerations and Content of
Premarket Submissions, 2023.

[8] CISA, NSA, FBI, ACSC, NCSC-UK, CCCS, BSI,
NCSC-NL, CERT NZ, and NCSC-NZ. Shifting the Bal-
ance of Cybersecurity Risk: Principles and Approaches
for Security-by-Design and -Default. Technical report,
2023.

[9] Shamal Faily and Claudia Iacob. Design as code: Facili-
tating collaboration between usability and security engi-
neers using cairis. In 2017 IEEE 25th International Re-
quirements Engineering Conference Workshops (REW),
pages 76–82, 2017.

[10] Shamal Faily, Riccardo Scandariato, Adam Shostack,
Laurens Sion, and Duncan Ki-Aries. Contextualisation
of data flow diagrams for security analysis. In Graph-
ical Models for Security: 7th International Workshop,
GraMSec 2020, Boston, MA, USA, June 22, 2020, Re-
vised Selected Papers 7, pages 186–197. Springer, 2020.

[11] Federal Office for Information Security, Medical En-
gineering Division of the German Electrical and Elec-
tronic Manufacturers’ Association, and Federal Institute
for Drugs and Medical Devices. Cyber Security Re-
quirements for Network Connected Medical Devices,
2018.

[12] OWASP Foundation. OWASP Threat Dragon. http
s://owasp.org/www-project-threat-dragon/,
2020.

[13] Charles Goodwin. Professional Vision, pages 387–425.
Springer Fachmedien Wiesbaden, Wiesbaden, 2015.

[14] Chauncey F Graetzel, Alexander Sheehy, and David P
Noonan. Robotic bronchoscopy drive mode of the auris
monarch platform. In 2019 International Conference
on Robotics and Automation (ICRA), pages 3895–3901.
IEEE, 2019.

[15] Health Sciences Authority. Regulatory Guidelines for
Software Medical Devices – A Life Cycle Approach,
2022.

[16] Joint Task Force Transformation Initiative. Guide for
Conducting Risk Assessments. Technical Report NIST
Special Publication (SP) 800-30 Rev. 1, National Insti-
tute of Standards and Technology, September 2012.

[17] IriusRisk. Threat Modeling Platform. https://www.
iriusrisk.com.

[18] Pontus Johnson, Robert Lagerström, and Mathias Ekst-
edt. A meta language for threat modeling and attack sim-
ulations. In Proceedings of the 13th International Con-
ference on Availability, Reliability and Security, pages
1–8, 2018.

[19] Loren Kohnfelder and Praerit Garg. The threats to our
products. Microsoft Interface, Microsoft Corporation,
1999.

[20] Kai H. Lim, Izak Benbasat, and Peter A. Todd. An
experimental investigation of the interactive effects of
interface style, instructions, and task familiarity on user
performance. ACM Trans. Comput.-Hum. Interact.,
3(1):1–37, mar 1996.

[21] JGraph Ltd. draw.io.

[22] Marjan Mernik, Jan Heering, and Anthony M. Sloane.
When and how to develop domain-specific languages.
ACM Comput. Surv., 37(4):316–344, dec 2005.

[23] Microsoft. Microsoft Threat Modeling Tool overview.
https://learn.microsoft.com/en-us/azure/se
curity/develop/threat-modeling-tool, 2022.

https://github.com/Threagile/threagile
https://github.com/Threagile/threagile
https://github.com/yathuvaran/AT-AT
https://github.com/izar/pytm
https://github.com/threatcl/threatcl
https://github.com/threatspec/threatspec
https://github.com/threatspec/threatspec
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://www.iriusrisk.com
https://www.iriusrisk.com
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool


[24] MITRE. CAPEC - Common Attack Pattern Enumera-
tion and Classification (CAPEC™), 2007.

[25] Bernard A. Nijstad and Wolfgang Stroebe. How the
group affects the mind: A cognitive model of idea gen-
eration in groups. Personality and Social Psychology
Review, 10(3):186–213, 2006. PMID: 16859437.

[26] D. L. Parnas. On the criteria to be used in de-
composing systems into modules. Commun. ACM,
15(12):1053–1058, dec 1972.

[27] Paul B. Paulus and Vincent R. Brown. Toward more cre-
ative and innovative group idea generation: A cognitive-
social-motivational perspective of brainstorming. Social
and Personality Psychology Compass, 1(1):248–265,
2007.

[28] Pharmaceuticals and Medical Devices Agency. Guid-
ance on Ensuring Cyber Security of Medical Devices,
2018.

[29] Nataliya Shevchenko. Threat modeling: 12 available
methods. Carnegie Mellon University, Software Engi-
neering Institute’s Insights (blog), Dec 2018. Accessed:
2023-Mar-21.

[30] Ben Shneiderman and Catherine Plaisant. Designing the
user interface: strategies for effective human-computer
interaction. Pearson Education India, 2010.

[31] Adam Shostack. Threat modeling: Designing for secu-
rity. John Wiley & Sons, 2014.

[32] Laurens Sion, Koen Yskout, Dimitri Van Landuyt,
Alexander van den Berghe, and Wouter Joosen. Se-
curity threat modeling: Are data flow diagrams enough?
In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, IC-
SEW’20, page 254–257, New York, NY, USA, 2020.
Association for Computing Machinery.

[33] Rock Stevens, Daniel Votipka, Elissa M. Redmiles,
Colin Ahern, Patrick Sweeney, and Michelle L. Mazurek.
The battle for new york: A case study of applied dig-
ital threat modeling at the enterprise level. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 621–637, Baltimore, MD, August 2018. USENIX
Association.

[34] Microsoft Software Development Lifecycle Team. The
stride per element chart. https://www.microsoft.
com/en-us/security/blog/2007/10/29/the-str
ide-per-element-chart/, 2007.

[35] Microsoft Software Development Lifecycle Team. The
stride per element chart, 2007. https://www.micros
oft.com/en-us/security/blog/2007/10/29/the
-stride-per-element-chart/.

[36] Ronald Thompson, Madeline McLaughlin, Carson Pow-
ers, and Daniel Votipka. There are rabbit holes i want
to go down that i’m not allowed to go down: An investi-
gation of security expert threat modeling practices for
medical devices. In 33rd USENIX Security Symposium
(USENIX Security 24), Philadelphia, PA, August 2024.
USENIX Association.

[37] ThreatModeler. ThreatModeler. https://threatmo
deler.com/.

[38] Shawn Tsuda, Dmitry Oleynikov, Jon Gould, Dan Aza-
gury, Bryan Sandler, Matthew Hutter, Sharona Ross,
Eric Haas, Fred Brody, and Richard Satava. Sages tavac
safety and effectiveness analysis: da vinci® surgical
system (intuitive surgical, sunnyvale, ca). Surgical en-
doscopy, 29:2873–2884, 2015.

[39] Barbara Tversky. Mind in motion: How action shapes
thought. Hachette UK, 2019.

[40] Dimitri Van Landuyt and Wouter Joosen. A descriptive
study of assumptions in STRIDE security threat model-
ing. Software and Systems Modeling, 21(6):2311–2328,
2022.

[41] Kim Wuyts and Wouter Joosen. Linddun privacy threat
modeling: a tutorial. CW Reports, 2015.

[42] Yu-Chun Grace Yen, Jane L E, Hyoungwook Jin, Mingyi
Li, Grace Lin, Isabelle Yan Pan, and Steven P Dow. Pro-
cessgallery: Contrasting early and late iterations for de-
sign principle learning. Proceedings of the ACM on
Human-Computer Interaction, 8(CSCW1):1–35, 2024.

[43] Zoe Braiterman, Adam Shostack, Jonathan Marcil,
Stephen de Vries, Irene Michlin, Kim Wuyts, Robert
Hurlbut, Brook S.E. Schoenfield, Fraser Scott, Matthew
Coles, Chris Romeo, Alyssa Miller, Izar Tarandach, Avi
Douglen, and Marc French. Threat Modeling Manifesto.

https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/
https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/
https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/
https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/
https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/
https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/
https://threatmodeler.com/
https://threatmodeler.com/

	Introduction
	Example Use Case: Surgical Robot
	Tool Design
	Implementation
	Building a Threat Modeling DSL
	Enumerating Threats and Controls
	Defining a Natural Suggestion Engine (Fig 2.D)
	Designing a User Interface (Fig 2.E)

	Discussion
	Future Work


